

1

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Linux drivers

Course

Field of study

Computing

Area of study (specialization)
Edge computing

Level of study
Second-cycle studies
Form of study

full-time

Year/Semester

1/2

Profile of study

general academic

Course offered in
Polish

Requirements

elective

 Number of hours

Lecture

15

Tutorials

Laboratory classes

15

Projects/seminars

Other (e.g. online)

Number of credit points

3

Lecturers

Responsible for the course/lecturer:

dr inż. Mariusz Naumowicz

email: mariusz.naumowicz@put.poznan.pl

tel. +48 61 665-2364

Faculty of Computing and Telecommunications

Piotrowo 3, 60-965 Poznań

Responsible for the course/lecturer:

 Prerequisites

The student starting the course should have basic knowledge of operating systems and electronics. They

should also understand the need to expand their competences and be ready to cooperate as part of the

team.

1

Course objective

-Providing students with knowledge related to modern embedded systems and the Linux operating

system and its use in IoT systems.

- Familiarizing students with modern methods of designing, testing and prototyping drivers in Linux for

embedded systems.

- Developing students' ability to solve complex design problems in the field of embedded systems and

operating systems.

- Developing teamwork skills in students.

Course-related learning outcomes

Knowledge

1.Has advanced and in-depth knowledge of broadly understood IT systems as well as methods and tools

used for their implementation, especially those related to building the hardware layer of

reprogrammable systems - [K2st_W1]

2. Has advanced detailed knowledge of selected issues in the field of computer science - [K2st_W3]

3. Has advanced and detailed knowledge of the life cycle of hardware or software information systems -

[K2st_W5]

4. He knows advanced methods, techniques and tools used in solving complex engineering tasks and

conducting research in the selected area of computer science - [K2st_W6]

Skills

1. When formulating and solving engineering tasks, he/she is able to integrate knowledge from various

areas of computer science (and, if necessary, also knowledge from other scientific disciplines) and to

apply a systemic approach, also taking into account non-technical aspects - [K2st_U5]

2. Is able to assess the usefulness and the possibility of using new achievements (methods and tools)

and new IT products – [K2st_U6]

3. He can, by using conceptually new methods - solve complex IT tasks, including unusual tasks and tasks

with a research component – [K2st_U10]

4. Can, in accordance with the given specification, design a complex device, IT system or process and

implement this project using appropriate methods, techniques and tools, including adapting existing or

developing new tools for this purpose – [K2st_U11]

5. Is able to determine the directions of further learning and implement the process of self-education,

including that of other people - [K2st_U16]

Social competences

1. Understands that in computer science knowledge and skills very quickly become obsolete - [K2st_K1]

1

2. Understands the importance of using the latest knowledge in the field of computer science in solving

research and practical problems - [K2st_K2]

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Formative assessment:

a) in the field of lectures: on the basis of answers to questions about the material discussed in previous

lectures,

b) in the field of laboratories: on the basis of the assessment of the current progress in the

implementation of tasks,

Summative assessment:

a) in the field of lectures, verification of the assumed learning outcomes is carried out by an oral pass

combined with the project defense, in case of doubts the written part (an electronic test on the Moodle

platform);

b) in the field of laboratories, verification of the assumed learning outcomes is carried out by means of a

design test and an assessment of the tasks performed during each laboratory meeting;

Getting extra points for activity during classes, especially for:

- discussion of additional aspects of the issue,

- the effectiveness of applying the acquired knowledge while solving a given problem,

- the ability to cooperate as part of a team practically carrying out a detailed task in the laboratory.

Programme content

The lecture program includes the following topics:

Introduction to Linux, building the kernel, building modules (in and out of the tree), configuration,

devicetree, bootargs, booting Linux. Introduction to tools supporting the design and testing of drivers.

The structure of the driver, issues related to the operation of the driver in the operating system.

Presentation of the basic issues of driver design on the example of a character device. Controller

interaction with hardware (memory mapping, register access, continuous memory for DMA). Driver

implementation that configures peripheral. Linux kernel interrupt handling, implementation of the

interrupt handler in drivers (registration / dereregistration, definition in devicetree, multithreading).

Linux subsystems. Construction of drivers used for communication in embedded systems.

Laboratory classes are conducted in the form of 2-hour lab exercises, preceded by a 2-hour instructional

session at the beginning of the semester. Exercises are carried out by 2-person teams.

The program of laboratory classes includes the following topics:

1

Preparation of the development environment necessary to program drivers for a dedicated embedded

system. Configuring, modifying and building the Linux kernel. Programming the character controller.

Copying data between user space and the kernel. IOCTLe. User space application for interaction with the

driver. Interaction with hardware (memory mapping, access to registers, continuous memory for DMA).

Implementation of the driver that configures peripheral. Interrupts (as Linux handles interrupts),

implementation of the interrupt handler in drivers (registration / dereregistration, definition in

devicetree, multithreading). Linux subsystems. Implementation of the I2C driver. Sysfs, an

implementation of the industrial I / O subsystem in the driver.

Teaching methods

1. Lecture with multimedia presentation (diagrams, formulas, definitions, etc.) supplemented by the

content of the board.

2. Laboratory exercises: multimedia presentation, presentation illustrated with examples given on the

board and performance of tasks given by the teacher - practical exercises.

Bibliography

Basic

1. Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman., Linux Device Drivers, 3rd Edition.

O'Reilly Media, Inc. 2005. ISBN: 0596005903.

2. Alberto Liberal de los Ríos, Linux Driver Development for Embedded Processors - Second Edition:

Learn to develop Linux embedded drivers with kernel 4.9 LTS, Independently Published, 2018. ISBN:

1729321828.

Additional

1. Daniel Bovet and Marco Cesati, Understanding the Linux Kernel, Third Edition, O’Reilly & Associates

Inc., 2005. ISBN: 0596005652.

Breakdown of average student's workload

 Hours ECTS

Total workload 75 3,0

Classes requiring direct contact with the teacher 30 1,0

Student's own work (literature studies, preparation for
laboratory classes, preparation for tests, technical reports
preparation) 1

45 2,0

1 delete or add other activities as appropriate

